

Dr. Srikanth Mutnuri, Professor Applied Environmental Biotechnology Laboratory, Department of Biological Sciences

Field Testing of Mobile Treatment Unit (MTU) solid liquid separator of Faecal sludge from Septic tanks

Background:

In most of the urban cities and towns, truck operators are involved in desludging on-sitecontainment systems and disposing the faecal sludge & septage in drains, water bodies and openareas, causing high level of environmental pollution and health risks. Due to which, many cities are already suffering the consequences, in the form of health ailments and serious pollution of water and soil resources. Most of the operators do not decant the septage in treatment plants due to non-availability of the same. In some cases, treatment plants are so distant that deters the operators to decant there due to high fuel/operational costs.

Keeping this in view, Water, Sanitation and Hygiene Institute (WASH Institute) has developed a treatment option to mitigate this problem by devising a system called Mobile Treatment Unit (MTU). MTU is an onsite Faecal sludge treatment technology.

MTU works with the concept of solid-liquid separation, sludge thickening and effluent treatment process. While the liquid is separated from the solid, the effluent passes through the membrane treatment process before the treated water is disposed. The treated water meets the established pollution control norms for wastewater disposal. This mobile unit is easy to operate and has low operational & maintenance cost.

The Mobile Treatment Unit has undergone detailed field-testing/study and evaluation by renowned

international institutions namely Duke University, USA and RTI International. The study reports by these two organizations have shown positive results, meeting the disposal standards of CPCB.

Objective of this Work:

As part of commercialization protocol of this technology, WASH Institute has decided to field test/study as per the protocol and acquire certification from Prof Srikanth Mutnuri at BITS Pilani K K Birla Goa campus.

The goals of this project are: (1) Field testing the MTU solid liquid separator of faecal sludge fromseptic tanks (2) to characterize the effluent post MTU operation for safe disposal and (3) to quantify the sludge separated post MTU operation.

Scope of this Work:

Field testing of MTU solid liquid separator:

One MTU solid liquid separator will be moved to Goa. This solid liquid separator will be used to separate solids and liquid at 60 different septic tanks over a period of 4 months. The liquid will betreated by the MTU onsite and the solids that will be separated will be taken and disposed at sites in either Baina or Sada, Goa. The driver and the workers to operate the MTU is under the scope of WASH INSTITUTE including their accommodation and local expenditure. SERVICE PROVIDER will have one research student associated with this project who will travel to the sites for overseeing MTU operation as well as to test the quality of water released post separation. Prototype MTU transportation, installation and operation is under the scope of WASH INSTITUTE.

Details of the system

The details of the system were the same as described by Forbis-Stokes et al., 2021.

(Forbis-stokes, A.A., Kalimuthu, A., Ravindran, J., Deshusses, M.A., 2021. Technical evaluation and optimization of a mobile septage treatment unit 277).

"A 0.5 HP mono-block centrifugal pump (Texon Engineering, Coimbatore, India) drew waste from the septic tank using a 5 cm internal diameter (ID) hose pipe inserted through one of the septic tank's risers. This liquid was sent into a 500 L holding tank located on the truck. The middle of the holding tank contained a 25 cm ID PVC pipe, 90 cm in height, with 10 mm diameter (dia.) holes drilled into the top

75 cm of the pipe to allow septic tank supernatant to fill the pipe. The holes covered this upper section with 10 mm spacing between each. The outside wall of that pipe was wrapped with a #250 mesh (58 µm) fabric to pre-filter the septic waste before pumping. The purpose of this fabric was to remove the larger particles and thereby extend the life of the succeeding filters by using a low-cost and easy to clean material. The holding tank was modified to have a conical-bottom to improve solids settling, and a baffle was installed around the feed pipe to better restrict the flow of solid particles towards the feed pipe. From the center of this pipe, liquid was pumped using a 1 HP mono-block, double capacitor centrifugal pump (CRI Pumps, Coimbatore, India), inducing an outside-in filtration of septage from holding tank into the fabric- covered pipe. The next filter was a dual-media (D-M) filter housed in a 190 L (166 cm height, 41.2 cm dia.) fiber-reinforced plastic (FRP) container. Flow entered the FRP container at the bottom and exited from the top". The D-M filter media distribution (bottom to top): 30 cm large pebbles (30-60 mm dia.), 30 cm small pebbles (4-30 mm dia.), 30 cm coarse sand (0.5-1.0 mm dia.), 15 cm fine sand (0.125-0.250 mm dia.), and 15 cm anthracite(1-2 mm dia.). The remaining volume was left empty. The D-M filtrate then entered a granular activated carbon (GAC) (Krishna Industrial, Chennai, India) filter housed in a FRP container with the same dimensions as the D-M filter, containing approximately 85 kg of GAC of $\#4 \times 8$ mesh size (2.4–4.8 mm) with 1200– 1800 m²/g surface area. GAC filtrate entered two microfilter (MF) polypropylene-wound filter cartridges (Placon Filters, Chennai, India) in series, with 10um and 5um of 5 in each housing unit respectively of 76.2 cm in length. MF effluent was treated with anultrafiltration (UF) membrane (ZeeWeed 1500 UF with 55.7 m² surface area, 192 cm length, 18 cm dia., and 0.02 µm nominal pore size (ReevesEnviro systems, Chennai). The hollow fiber membranes had an outer dia. of 0.1 mm and nominal pore size of 0.02 µm with an outside-in flow direction. All filtrations except the UF were conducted as dead-end filtration. The bottom of the holding tank was connected to a centrifuge (1 HP, 2800 RPM, 30 L volume). The centrifuge concentrated solids that settled in the holding tank. Centrate (i.e., clarified liquid leaving the centrifuge) was returned to holding tank using a submersible pump. The Chlorination system is connected to one of the UF outlet and, with the use of a dosing pump, the bleach is added at the rate of 110 ml/min. The supersaturated chlorine solution is made by mixing 2 L of industrial bleach solution to 20 L of fresh water.

A.A. Forbis-Stokes et al.

Journal of Environmental Management 277 (2021) 111361

Figure: Mobile Treatment Unit (MTU) process flow diagram as presented in Forbis-Stokes et al., 2021.

Analysis of wastewater post treatment:

Post separation of the solid and liquid and the post treatment of the water separated, the discharge water was collected and tested for all the parameters as per CPCB standards. Our team monitored and collected the samples.

Methodology:

The WASH-mobile treatment system was operated in Goa, India. This unit was taken to different households, where the complete liquid volume of septic tank wastewater was treated by the system (Table A2). The initial septic tank wastewater and the final treated effluent was collected by the operators in 1L sampling bottles. The samples were then submitted to the concerned person for analyzing it for various wastewater-defining parameters. The wastewater was analyzed as per the standard protocols mentioned in APHA. Detailed methodology is given in the Annexure at the end of the document. Briefly, the methods are as follows - The **pH** of the samples was checked using Oakton pH meter. The **Chemical oxygen demand** (COD) of the samples was measured using closed reflux spectrophotometer method where dichromate reagent along with acid and catalysts was used forthe detection. The phosphorus was calculated in the form of **orthophosphates (OP)** and the method employed was based on ammonium vandate and molybdate method. The **Total ammoniacal nitrogen (TAN)** was calculated using Merck kit. However, as suggested in one of meeting, the TAN estimation was crosschecked with Kjeldahl

method. The Nitrates (NO₃) were also measured using Merck kit. The kit method was used to estimate the nitrates in the KNO3 standards as well to validate its efficacy. The Biological oxygen demand (BOD) was measuredusing 5-day incubation method, maintaining the samples in cold environment. The Total dissolved solids (TDS) in the samples was measured by filtering the samples. The filtrate collected dried and used to calculate TDS. The Total suspended solids (TSS) present in the sample was measured by filtering the wastewater samples through 1.2um filter. The last parameter was the Coliform count that was determined by plating the samples (with/without dilution) on MacConkey agar plates.

Results:

The mobile treatment unit designed by WASH institute was driven to Goa in order to test its treatment efficiency at different geographical locations (60 tanks, Treated 4,53,701 L in total with a total operational time of 180hrs). This unit was a combination of different filters, which are connected in series, thus making a systematic treatment process. The filters used were media filters, activated carbon based filters and membrane filters. Each filter has specific role in the treatment process. The main objective of the designed treatment unit was to achieve the treatment efficiency in accordance to different sites/households were selected in Goa and their septic tank the CPCB standards. 60 wastewater was treated whose datais presented in the Table presented below. The influent and effluent data for COD (dissolved) and OP showssignificant removal efficiency by the system. However, the nitrogen component of the wastewater(TAN, NO₃) showed inconsistent reduction. Regarding the solids present in wastewater, although there was significant removal of TDS and TSS, the TSS component was still a little high. This could be because of using the chlorination in the treated effluent as a final polishing step. With respect to coliforms, the MTU shows promising results as the treated wastewater shows no or very few colonies on agar plates.

Table: A	Average influent	and effluent	concentrations	for different	wastewater	defining p	parameters
	8						

Sample	OP (mg/L)		TAN (mg/L)		NO ₃ - (mg/L)		Coliforms	
							(CFU/10	Oml)
No.	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet
S1	6	1	48	22	23	12	12X10 ⁴	N.D.

S2	3	1	29	22	48	39	3X10 ³	40
S 3	8	3	35	27	22	14	15X10 ³	60
S4	6	4	74	72	36	34	34X10 ²	N.D.
S 5	13	9	97	89	37	35	31X10 ⁴	N.D.
S6	20	6	76	79	46	47	37X10 ⁵	N.D.
S 7	13	5	62	60	75	66	24X10 ⁵	12
S8	13	5	78	64	54	59	12X10 ⁶	10
S 9	20	10	154	152	68	54	27X10 ⁴	2
S10	20	14	96	98	25	27	34X10 ⁴	34
S11	16	10	120	124	34	37	24X10 ²	N.D.
S12	17	9	70	77	43	33	46X10 ⁴	22
S13	11	4	54	61	36	37	33X10 ³	N.D.
S14	23	15	152	154	41	39	28X10 ³	12
S15	26	9	118	106	21	15	32X10 ⁴	N.D.
S16	12	4	64	56	35	34	12X10 ⁴	N.D.
S17	32	9	74	68	31	28	24X10 ⁴	12
S18	12	10	78	75	32	37	32X10 ⁵	4
S19	15	8	44	46	33	36	24X10 ⁴	N.D.
S20	30	11	94	91	25	28	35X10 ⁴	2
S21	27	13	90	85	18	21	24X10 ²	N.D.
S22	19	14	112	119	23	19	18X10 ⁴	N.D.
S23	14	11	104	93	21	18	24X10 ⁴	10
S24	36	21	127	121	14	18	34X10 ⁶	8
S25	24	16	154	114	28	26	24X10 ⁶	N.D.
S26	25	11	145	132	19	16	12X10 ⁴	N.D.
S27	20	11	74	53	22	18	20X10 ⁴	4
S28	14	6	46	41	34	22	5X10 ⁴	6
S29	47	12	48	37	28	29	24X10 ⁴	12
S30	39	7	123	113	26	24	28X10 ⁴	N.D.
S31	49	8	76	71	22	23	17X10 ⁴	8

S32	51	12	98	67	27	23	46X10 ⁶	22
S33	23	15	122	116	26	21	34X10 ⁵	10
S34	46	13	69	62	13	15	16x10 ⁴	N.D.
S35	34	9	89	45	18	14	$22x10^2$	N.D.
S36	38	11	103	97	24	19	36x10 ⁶	12
S37	24	8	131	124	19	10	18x10 ³	N.D.
S38	31	7	74	65	15	12	$27x10^{6}$	14
S39	29	6	102	98	22	16	$26x10^2$	4
S40	42	10	83	86	28	25	32x10 ⁴	6
S41	57	14	78	72	33	35	28x10 ⁶	N.D.
S42	14	11	42	41	13	11	16x10 ⁸	460
S43	9	6	56	42	13	15	13x10 ⁴	200
S44	15	11	89	64	17	12	22x10 ⁵	N.D.
S45	15	13	60	61	18	11	18x10 ⁴	N.D.
S46	7	6	29	35	11	12	22x10 ⁴	N.D.
S47	13	1	20	14	47	34	$14x10^{3}$	N.D.
S48	66	2	63	45	29	21	4x10 ⁴	N.D.
S49	23	10	58	76	32	36	23X10 ⁴	32
S50	5	1	16	17	38	25	56X10 ⁵	130
S51	15	9	86	78	30	37	4X10 ⁵	56
S52	31	12	114	78	39	41	1X10 ⁵	120
S53	41	15	69	65	34	38	24X10 ⁴	134
S54	20	11	106	93	32	37	3X10 ⁵	400
S55	17	5	62	46	21	29	2X10 ⁵	340
S56	17	8	108	92	38	39	27X10 ³	60
S57	15	8	70	76	47	56	18X10 ³	4
S58	22	13	156	148	46	57	10X10 ⁴	6
S59	18	3	66	50	45	32	6X10 ⁴	10
S60	33	13	196	112	54	46	20X10 ⁴	200

Sample	COD (m	g/L)	BOD (m	ng/L)	TDS (m	g/L)	TSS (mg/	/L)	pН	
No.	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet
S1	620	68	234	50	275	74	108	27	6.9	6.42
S2	740	20	231	18	156	69	236	38	7.82	7.26
S 3	147	48	67	12	269	89	103	24	7.11	7.08
S4	97	52	96	8	161	45	115	18	7.19	7.23
S 5	147	60	182	11	402	91	102	26	7.95	7.75
S6	480	90	179	14	356	65	175	45	7.43	7.46
S 7	613	92	145	11	242	68	102	27	7.4	7.41
S8	333	77	132	7	342	55	235	60	7.56	7.44
S 9	340	122	134	13	268	59	126	18	8.04	7.98
S10	270	108	154	7	345	108	167	48	7.19	7.21
S11	280	57	114	9	289	61	112	26	7.75	7.7
S12	227	88	156	12	321	95	213	62	7.53	7.54
S13	277	108	121	15	237	46	165	47	7.51	7.46
S14	237	102	167	20	435	125	136	33	7.8	7.7
S15	330	63	103	8	412	58	214	56	7.73	7.68
S16	307	50	175	11	293	36	79	18	7.43	7.41
S17	673	68	89	9	212	38	113	23	7.12	7.14
S18	227	200	231	18	232	41	87	17	7.09	7.11
S19	233	103	78	10	234	38	89	9	7.11	7.02
S20	500	100	110	13	214	31	124	32	7.25	7.22
S21	273	78	93	11	293	59	146	38	7.34	7.36
S22	247	75	141	10	269	50	87	18	7.04	7.12
S23	107	85	92	5	288	49	98	23	7.02	7.1
S24	460	185	234	15	412	85	187	51	7.19	7.11
S25	440	65	212	9	327	61	143	35	7.46	7.24
S26	500	153	256	11	303	28	112	21	8.02	7.45
S27	213	160	103	12	204	54	134	27	7.23	7.12
S28	133	75	89	7	210	69	108	33	7.26	7.1

S29	133	75	113	11	197	48	89	17	7.04	7.02
S30	20	32	137	14	260	58	121	36	7.24	7.18
S31	433	83	152	12	313	98	186	53	7.21	7.22
S32	620	67	114	15	376	71	215	56	7.45	7.04
S33	633	42	67	12	349	62	167	77	7.19	7.06
S34	367	128	123	17	402	48	156	48	7.11	7.08
S35	327	37	103	11	219	41	89	11	7.48	7.36
S36	580	92	89	8	214	99	256	69	7.18	7.18
S37	107	35	78	9	146	25	102	17	7.24	7.21
S38	693	108	102	18	256	94	178	63	7.34	7.28
S39	413	53	115	14	223	27	123	33	7.26	7.31
S40	1087	73	98	8	289	41	245	33	7.25	7.26
S41	613	98	82	9	274	47	221	28	7.29	7.24
S42	507	158	253	35	250	67	1273	11	7.5	6.8
S43	235	56	119	25	234	59	94	15	7.04	6.87
S44	237	78	120	32	242	63	232	22	7.87	7.46
S45	127	28	65	11	231	58	617	28	6.95	7.06
S46	93	33	48	14	217	51	119	8	7.75	7.48
S47	133	37	87	25	312	79	315	78	6.57	7.01
S48	1880	198	678	56	115	47	156	42	6.97	6.21
S49	200	115	105	18	378	112	168	44	7.55	7.74
S50	67	20	48	6	316	98	223	56	7.19	7.47
S51	113	68	105	11	345	108	198	47	7.05	7.25
S52	807	233	360	23	378	125	221	55	7.35	7.31
S53	747	123	200	112	399	161	269	42	8.09	7.99
S54	647	68	280	17	169	65	167	48	6.77	7.38
S55	367	187	300	70	255	94	211	54	7.44	7.55
S56	213	52	105	18	369	97	241	71	7.76	7.64
S57	550	278	201	25	392	86	114	26	7.19	7.32
S58	430	112	198	19	422	134	119	32	7.74	7.61

S59	267	113	156	16	158	80	136	32	7.43	7.57
S60	533	5	212	21	234	123	206	56	7.51	7.53

Conclusion:

"Mobile septage Treatment Unit (MTU)", an innovation aimed at collection and treatment of septage from septic tanks, is able to treat septage satisfactorily and discharges treated effluent meeting the current CPCB standards

Prof. Srikanth Mutnuri, BITS Pilani K K Birla Goa campus

Report Reviewed by

Prof. Ligy Philip, IIT Madras

and

Prof. Arun Kumar Thalla, NIT Surathkal

Annexure

A1. METHODS

Test 1- pH: Oakton pH meter

<u>**Test 2-TDS:**</u> Properly mixed sample was pipetted out and added to glass fiber filter $(1.45\mu m)$ with applied vacuum. Wash with three successive 10ml volumes of reagent grade water, allowing complete drainage between washings, and continue suction till the filtration is complete. Transfer total filtrate to a weighed evaporating dish. Dry evaporate the sample in an oven for 1 h at 180 degrees. Once dried, cool down the sample to room temperature.

TDS (mg/L) = ((A-B) x 100)/sample volume, ml Where: A= weight of dried residue + dish, mg B= weight of dish, mg

Test 3-Total suspended solids (TSS):

Known volume of sample filtered (1.2um) using vacuum filter assembly. Carefully transfer the filter to a weighing dish, and place filter on a butter paper sheet. Place filters on sheet into an oven set to $104 \pm 1^{\circ}$ C and dry for a minimum of one hour. Remove filters from oven and cool them down at room temperature. Weigh the sample filter.

TSS (mg/L) = (A - B)/V

Where: A = mass of filter + dried residue (mg),

B = mass of filter (tare weight) (mg), and

V = volume of sample filtered (L)

Test 4- Chemical Oxygen Demand

REAGENTS:

- Standard Potassium dichromate (K₂Cr₂O₇) digestion solution(1L): Add to about 500 mL distilled water 10.216 g K₂Cr₂O₇, primary standard grade, previously dried at 150°C for 2 h, 167 mL conc. H₂SO₄, and 33.3 g HgSO₄. Dissolve,cool to room temperature, and dilute to 1000 ml.
- Sulfuric acid reagent: Add 1% Ag₂SO₄ to the respective volume of H₂SO₄. Let stand 1 to 2 d to dissolve and mix. This accelerates the oxidation of straight chain aliphatic and aromatic compounds.

Procedure:

- 1. Wash COD tubes and caps with 20% H₂SO₄ before using to prevent contamination.
- 2. Place sample (2 mL) in COD tube and add $K_2Cr_2O_7$ digestion solution (1.2 mL).
- 3. Carefully run sulphuric acid reagent (2.8 mL) down inside of vessel so an acid layer is formed under the sample-digestion solution layer and tightly cap tubes or seal ampules, and invert each several times to mix completely.
- 4. Place tubes in block digester preheated to 150°C and reflux for 2 h behind a protective shield.
- 5. Cool to room temperature and place vessels in test tube rack. Some mercuric sulfate may precipitate out but this will not affect the analysis.
- 6. Measure the absorbance at 600nm and calculate the COD concentration by standard graph.

Test 5- Biological Oxygen Demand

Step1:- Calculate COD

Step 2:- Estimate the BOD₅ value to be expected for the wastewater sample:

Expected BOD₅ value _ 80 % of the COD value

Look for corresponding measuring range in the following chart and gather correct values for sample volume and factor.

Sample volume (ml)	Measuring range (mg/l)	Factor
432	0 - 40	1
365	0 - 80	2
250	0 - 200	5
164	0 - 400	10
97	0 - 800	20
43.5	0 - 2000	50
22.7	0 - 4000	100

- Rinse measuring bottle with sample. Empty thoroughly.
- **Exactly measure** the required oxygen-saturated (thoroughly homogenized) quantity of the sample according to information.
- Put the magnetic stirring rod into the bottle.
- Insert a rubber quiver in the neck of the bottle.
- Put **2 sodium hydroxide tablets** into the rubber quiver with a tweezers. (Caution: The tablets must never come into the sample!)
- Screw OxiTop[®] directly on sample bottle (tightly close).

<u>Start measurement:</u> Press S and M simutaneously. (2 seconds) untill the display shows 00.

Display: Stored values are deleted.

- Keep the measuring bottle with the OxiTop put on for 5 days at 20°C (e.g. in a incubator). After the meas, temperature has been reached (after 1 hour at the earliest, after 3 hours at the latest; AutoTemp function), the OxiTop automatically starts the measurement of the oxygen consumption.
- During the 5 days the sample is continuously stirred. The OxiTop automatical stores one value every 24 hours for 5 days. To have the current value show press the M key.

<u>Display current measured value:</u> Press M until measured value is displayed (1 second).

• Readout of the stored values after the 5 days have passed.

Recall stored values:

S

Press S until measured value is displayed (1 second).

Scroll to next day by repressing the S key while the measured value is displayed (5 sec). Fast scrolling by repeatedly pressing the S key.

• Convert the displayed measured value (digits) into the BOD value with the following table (Digits x Factor = BOD5 in mg/l):

Sample volume (ml)	Measuring range (mg/l)	Factor
432	0 - 40	1
365	0 - 80	2
250	0 - 200	5
164	0 - 400	10
97	0 - 800	20
43.5	0 - 2000	50
22.7	0 - 4000	100

Test 6- Phosphorus

Preparation of reagents:

1. Reagent A: Ammonium molybdate solution

Dissolve 25 gm of Ammonium molybdate in 400 ml distilled water.

2. Reagent B: Ammonium vandate

Dissolve 1.25 gm of Ammonium vandate in 300 ml distilled water.

3. Mixed reagent: should be prepared freshly.

To prepare 50 ml of mixed reagent, take 20 ml of reagent A, 15 ml of reagent B, 12.5 ml of concentrated HNO₃ and 2.5 ml distilled water.

Procedure:

Take 3.5 ml sample, add 1 ml of mixed reagent and dilute to make final volume of 5.0 ml by adding0.5ml of water. Mix the sample well or vortex for 10-20 sec. Measure the absorbance at 450nm.

The concentration can be find out by using the standard curve made for KH₂PO₄.

Test 7- Total ammoniacal nitrogen (TAN): Merck Kit

Photometric method (contains sodium nitroprusside).

Procedure: 5ml of reagent-1 mixed with 100ul or 200ul of the sample. 1 spoon of reagent 2 added. Vortexed to mix it completely and left for 15min. Using the barcode reader (different for 100/200ul sample volume) provided in the kit (that only worked withthe Merck spectrophotometer that we have), the concentration was measured.

Spectrophotometer: Spectroquant Prove 100

This kit analysis for TAN was cross-checked with the standard method mentioned inAPHA (titration method) and the results that we achieved was mostly similar. The standard deviation was found to be ± 2 .

Test 8- Nitrates: Merck kit

Nitrates test: Photometric method (contains boric acid, cadmium powder (pyrophoric), sulfanilic

acid). Procedure: 10ml sample mixed with 1 spoon of powder provided in the kit. Vortexed for 1 minute and left for 5 min. Using the barcode reader provided in the kit(that only worked with the Merck spectrophotometer that we have), the concentration was measured.

The samples were sent to external lab for nitrates estimation where they analysed the samples by using standard APHA method and the results they send were in accordance o our kit method.

Test 9- Bacterial Tests

Media used: MacConkey agar

- Autoclave your media and prepare agar plates.
- Dilute your sample in 0.8% NaCl (serial dilution). For this, add 0.1ml of sample in 0.9mlof saline. Mix it well and do the serial dilutions.
- Then take 0.1ml of sample from each dilution and pour it on MacConkey agar plate. With the help of glass spreader (L-shape), spread the sample on whole plate. Allow the sample to dry and incubate the plates at 37 degrees in incubator.
- After 24-48 hours, check the plates for the presence/absence of colonies.
- Different bacteria gave different colored colonies.
- E.coli shows pink colonies on agar plate.
- Count the number of colonies on plate and multiply with dilution number you have used.
- This will give colony forming unit per 0.1ml (CFU/0.1ml).
- Calculate further CFU/ml (standard unit).

A2. Site details and data about sludge generation

Site Assess- ment #	Site	Dimensions	No. of Chambers Desludged	Level Remaining Info	Volume desludge d (L)	Treatment Time (hr)	No. of Backwashes for UF
1	Syed-MES College	5ftliquidlevel + 0.5 ftsludge + 1.5ft free board	1	2 to 4 " of sludge	4400	0:45	1
2	Dourlo-MES college	6ft liquid level +1ft sludge	1	0.5 ft sludge	5700	1.25	2
3	Usman Ali- MES college	5.75ft liquid level+0.75ft of sludge	1	2 to 4 " of sludge	8499	2:45	4
4	Rafik-MES college	7ft depth + 2 feet free board + 1 ft sludge	1	0.5 ft sludge	5864	1:30	3
5	Abdul Karim- MES college	6 ft = 5 ft liquid level + 1 ft slurry	1	2 to 4 " of sludge	4166	1.58	3
6	Varian -MES college	depth 8 ft = 6 ft liquid level + 2 ft slurry	1	1 ft sludge	3875	1:30	3
7	Bhasir Ahmed-MES College	6 ft liquid level (with floatable solids) +2 ft sludge	1	0.5 ft sludge	4760	1:00	2

8	Vaman Naik- MES College		1		3500	0:45	1
9	Rafir-MES college	depth 5 ft+ 2.5 ft sludge	1	1.5 ft sludge	4300	0.34	1
10	Gawade- MES college	7 ft depth = 6 ft liquid portion+1 ft sludge)	1	2 to 4 " of sludge	9700	3:50	7
11	Naik- Zuarinagar	8ft, liquid depth - 7ft + 1 ft sludge	1	2 to 4 " of sludge	10100	4:00	8
12	Shaik salim- Near MES college		1		6400	2:15	4
13	Naik- Zuarinagar	8 ft, liquid depth - 7ft + 1ft sludge	1	2 to 4 " of sludge	11365	3:50	7
14	Shaiksalim- Siddarth colony	4ft liquid portion+1.5ft sludge	1	2 to 4 " of sludge	6263	3.65	7
15	Ismail- siddarth colony	Total depth 6ft - 4ft liquid + 1 ft sludge + 1 ft freeboard	1	0.5 ft sludge	8700	3:20	6
16	Zareena Khader-		1		5308	2:00	4

	Siddharth						
	colony						
		7 ft liquid +					
17	Princy	1.5 ft sludge	1	0.5 ft	14175	5.00	10
1/	johnson	+ 1.5 ft		sludge	141/5	5.00	10
		freeboard					
		9 ft. (5ft					
	Nadaam	liquid + 2.5					
18	Nauceini-	ft sludge +	1	0.5ft sludge	13017	4:30	9
	Zuarriagar	1.5 ft free					
		board).					
		8 ft depth					
	Desai-711arai	(6ft liquid		2 to 4 " of			
19	Desai-Zuarai	portion + 1 ft	1		8674	2.51	5
	llagai	sludge +1 ft		sludge			
		freeboard)					
		10 ft, in-					
		depth = 7 ft					
	Vijaya-	of liquid		0.5 ft			
20	Siddharth	level $+ 1.5$ ft	1	sludge	11600	4:00	8
	colony	sludge		siudge			
		depth+1.5					
		freeboard).					
		Depth 6 ft =					
		2.25 ft liquid					
21	Mohan-MES	depth + 2.75	1	1.75 ft	3670	0.30	1
21	college	ft sludge	1	sludge	5070	0.50	1
		depth + 1 ft					
		free board.					

22 Vin	Vinodha- Siddharth	6ft liquid level +1ft	1	2 to 4 " of	12300	4:30	9
	colony	sludge		sludge			
		depth 10 ft =					
	Rahima-	6 ft liquid		2 to 4 " of			
23	Siddharth	level $+ 1.5$ ft	1	sludge	10865	4:15:00	8
	colony	sludge + 2.5		siudge			
		ft free board					
	D G Mukthi-	7 ft, 6 ft		2 to 4 " of			
24	Zuari nagar	liquid level +	1	sludge	8700	3:00	6
		1 ft sludge					
		6 ft, 5 ft					
25	Subhash-	liquid level +	1	3 " of	6800	2.30	5
	MES college	1 ft sludge	1	sludge	0890	2.30	5
		depth					
	Suresh	8 ft, 7 ft					
26	Nayak- Zurari Nagar	liquid level +	1	3 " of	13050	1.30	0
20		1 ft free	1	sludge	15050	т.50	7
		board					
	Louis	8 ft, 6.5 ft -		2 to 4 " of	0.5(5	2.20	
27	Siddharth	liquid level,	1				7
21		1.5 ft -	1	sludge	9,505	5.50	
	colony	sludge					
		7ft , 1 ft					
	VD Noil	sludge depth		2" of			
28	KD Naik-	+ 5 ft liquid	1		5608	2:00	4
	Zuari Nagar	level+1 ft		sludge			
		free board					
	Dayanand -						
29	Siddharth		1		7896	3:00	6
	colony						

		6 ft. 5.5 ft					
30	Balachandra	liquid level + 0.5 ft sludge depth	1	2 to 4 " of sludge	7415	2:30	5
31	Nazima- Siddarth Colony	8ft, 7 ft liquid level + 1 ft sludge depth	1	3 " of sludge	11584	4:00	8
32	Ahmed-Park street colony	7ft, 5.5 ft liquid level + 1.5 ft sludge depth	1	3 " of sludge	10132	3:30	7
33	Sheikh Gulab	10 ft, 6.5 ft - liquid level, 1.5 ft - sludge depth,2 ft free board	1	0.5 ft sludge	7100	2:30	5
34	Anil-Siddarth college	4 ft , 1 ft sludge depth + 3 ft liquid level	1	2 to 4 " of sludge	4300	0.34	1
35	Kamal-MES college	depth 5 ft = 3 ft liquid level + 2.5 ft sludge + 0.5 ft free board	1	1 ft sludge	5375	1:10	2
36	Pablo-MES College	5ft,3.5 ft liquid level + 1 ft sludge	1	2 to 4 " of sludge	5664	1:24	2

		depth+0.5					
		free board					
	Sheikh	8 ft, 6 ft					
	Muhammed	liquid level +		3 " of			
37	A shbraf	1 ft sludge	1	sludgo	8598	2:40	5
	Asiiiiai	depth+1 free		siudge			
	nagar	board					
		8 ft, 6 ft					
38	Shabina-	liquid level +	1	0.75 ft of	10511	3:35	7
	Zuari Nagar	2 ft sludge	1	sludge	10311		/
		depth					
		9 ft, 7.5 ft -					
39	Fidele-MES	liquid level,	1	0.5 ft	0700	2.00	
	College	1.5 ft -		sludge	8700	3:00	6
		sludge depth					
		6ft , 1 ft					
10	Ramesh-	sludge depth	1	0.5 ft	0800		7
40	MES college	+ 5 ft liquid	1	sludge	9800	3:30	/
		level					
		10ft,8 ft					
	G ¹ 1	liquid					
41	Sreenivash -	portion+1 ft	1	2 to 4 " of	10500	3:30	7
	upper orchard	sludge+1ft		sludge			
		free board					
12	Lalsab-MES		1		5 464	2 00	
42	college				5464	2:00	4
	Ram-Zuari						
43	nagar		1		4425	0:45	2

44	Muzafarshah- MES college	6ft,5 ft liquid,1ft freeboard	1		8400	3:00	6
45	Krishna - Zuari nagar	5ft liquid,2.5ft sludge	1	1 ft sludge	7332	2:20	5
46	Parushuram- Mother teresa colony	5 ft depth +1 ft sludge +1ft free board	1	2 to 4 " of sludge	10150	3:30	7
47	Yusuf-MES College	7ft depth .6 ft liquid+1ft freeboard	1		5732	1:45	3
48	Amam- Ameer colony	10ft,8ftliquidportion+1ftsludge+1ftfree board	1	2 to 4 " of sludge	7900	2:50	5
49	Acharia- Bharath colony	8ft, 7 ft liquid level + 1 ft sludge depth	1	3 " of sludge	8745	3:00	6
50	Samuel-Zuari nagar	7ft depth,6ft liquid portion+1 ft sludge	1	3 " of sludge	6250	1:45	3
51	Airway- Jalvayu vilas	8ft, 7 ft liquid level + 1 ft sludge depth	1	2 to 4 " of sludge	4850	0:45	2

52	Meghna dileep-Zuari nagar	6ft depth,3 ft liquid +1 ft sludge +1ft freeboard	1		3949	0:30	1
53	Babu-Zuari nagar	6ft depth,4 ft liquid +1 ft sludge +1ft free board	1	2 to 4 " of sludge	5466	1:35	3
54	Amit factory	3 ft liquid +3ft sludge	1	1.5 ft sludge	4350	0:45	2
55	Sadanand- Surya colony	12ft,9 ft liquid portion+2 ft sludge +1 ft freeboard	1	0.5 ft sludge	10932	4:00	8
56	John- Dabolim	6ft.5ft liquid+1 ft free board	1		4000	0:35	1
57	Naik -MES college	8 ft depth (6ft liquid portion +1ft sludge +1 ft free board)	1	2 to 4 " of sludge	8196	3:00	6
58	Brandon- MES college	7ft depth.(6ft liquid+1 ft free board)	1		5666	1:20	3
59	Swetha Naik- Sriram nagar	8ft depth,6 ft liquid portion+2 ft sludge +1 ft freeboard	1	0.5 ft sludge	5889	1:35	3

60	Suresh-MES nagar	6 ft depth,4.5 ft liquid+1.5 ft sludge +0.5 ft free board	1	0.5 ft sludge	7416	2:15	5

Site Assess- ment #	Site	Total Operational Time (hr)	Effective Flowrate (L/hr)	Notes/Reason for Stopping MTU operation	Chlorination
1	Syed-MES College	1:15	2350	Processed all 5 ft of liquid level and 0.5 ft of sludge portion (mostly sand mixed with slurry).	Y
2	Dourlo-MES college	2:05	2850	Processed the liquid portion completely .40 kg of sludge was collected .The raw liquid colou was blackish.35 kgs collected	Y
3	Usman Ali- MES college	3:10	2833	Processed liquid volume, 0.75 ft slurry processing time 30 minutes included in operation time.	Y
4	Rafik-MES college	2:00	2932	25 kgs of sludge collected the rawliquid was blackish in colour /7members usage /last desludging was4 years ago.	Y
5	Abdul Karim-MES college	2:20	2058	Processed all liquid portion 7 members usage /Last desludging was 3 yrs ago .Raw liquid was in muddy colour.Treated effluent was very clear.48 kgs was desluged	Y
6	Varian -MES college	2:00	1947	Processed liquid volume and 1 ft sludge is left over because it was thick and unable to pump it by sludge pump and processed 1 ft sludge portion was kind of slurry. 6 members usage .Last desluged by 2014.35 kgs desluged	Y

				Processed the liquid portion	
	Bhasir			completely .20 kg of sludge was	
7	Ahmed- MES	1:30	2360	collected .5 centrifudge bags were	Y
	College			changed .6 members usage .Not sure	
				when it was lst desludged .	
				There was power shortage in the	
	Vomen Neile			area.4 members usage .No idea when	
8	MES Collogo	1:20	2100	it was desluged last .The pastings of	Y
	WIL'S College			the septic tank was not done	
				throughly .	
				The septage had a lot of floating	
	Rafir-MES			particles in it .During the processing	
9		1:00	2000	of the sludge the centifudge bag got	Y
	concge			clogged very frequently ,so we had to	
				stop the operation .4 members usage	
				6 members usage .Tha tank was not	
10	Gawade-	1.15	2700	properely plastered .It was desluged	V
10	MES college	т.13	2700	before 5 yrs .The septage was in the	1
				colour of brick.	
11	Naik-	4.30	2600	6 members usage 70 kgs desluged	V
11	Zuarinagar	1.50	2000	o memoers usuge o kgs desidged	1
	Shaik salim-			Processed liquid portion and 0.8 ft of	
12	Near MES	3.03	2141	sludge is processed and 0.7 is left	Y
	college			over.Voltage drop	
				The senatage was in light vellowish	
13	Naik-	4.20	2841	colour /6 members usage /last	V
15	Zuarinagar	4.20	2071	desludges before 5 years	1
	Shaiksalim-			Processed 4 ft liquid portion and 1.5	
14	Siddarth	4 65	2101	ft of sludge denth collected 25 kgs of	Y
	colony	1.00	2101	sludge in total of 7 nos of mesh bags	1
	colony				

15	Ismail- siddarth colony	4:10	2733	Completely de-sludged 4 ft of liquid level and 0.5 ft sludge depth is left over.Blackish yellow raw liquid .6 members usage.Plastering was not done properly there were much stones and sand particles	Y
16	Zareena Khader- Siddharth colony	2:30	2654	Completely de-sludged liquid level.	Y
17	Princy johnson	5:30	2835	Completely de-sludged liquid level and 0.5 ft sludge depth is left over.4 houses with 12 members .No details of last desludging .	N
18	Nadeem- Zuari nagar	5:00	2892	Last desludged before 6 months .Usage 5 members .Indication of seepage in the tank .	N
19	Desai-Zuarai nagar	3.2	2879	We desludged all 6ft of liquid level and processed 1 ft of sludge, collected 25 kgs of sludge used in 1 no of mesh bags deployed in each conical tank and centrifugation system during the treatment.	Y
20	Vijaya- Siddharth colony	4:30	2900	Desludged before 5 yrs.8 members usage .	Y

21	Mohan-MES college	1:00	2465	In 2.75 ft sludge depth, collected 1 ft of sludge depth (did not process only collection, since the particles was colloidal and clogging the mesh bags) in 2 barrels which sums to 180 kgs + 15 kgs of sludge is stored in the centrifuge system, total of 195 kgs collected and disposed at STP.	Y
22	Vinodha- Siddharth colony	5:00	2000	Processed liquid and sludge portion completely. Even though the chlorine dosing was not invloved, the effluent was odorless.Voltage drop	Y
23	Rahima- Siddharth colony	4:45	2875	Processed liquid and sludge portion completely. Only 2 to 4 " of sludge depth is left over.Last desludged before 8 years.5 users.46 kgs desluged	Y
24	D.G.Mukthi- Zuari nagar	3:30	2896	Processed liquid and sludge portion completely. Only 2 to 4 " of sludge depth is left over.90 kgs desluged	Y
25	Subhash- MES college	3:00	2756	Processed liquid and sludge portion completely. Only 3" of sludge depth is left over. The tank was not plastered properely .last desludged before 7 yrs. Users 6	Y
26	Suresh Nayak- Zurari Nagar	5:00	2900	Processed liquid and sludge portion completely. Only 3" of sludge depth is left over. The tank was not plastered properely .Last desludged before 5 yrs.users 5	Y

27	Louis- Siddharth colony	4:00	2733	The tank was emptied completely with liquid portion being processed.90 kgs of sludge was collected.	Y
28	KB Naik- Zuari Nagar	2:30	2804	it's the 1st desludging after 4 years .5 users.Was not properly plastered .The tank was emptied completely	Y
29	Dayanand - Siddharth Colony	3:30	2632	The tank was under a structure and was only able to access through a pipe.the tank was last desludged in 2013.users 4 ppl.	Y
30	Balachandra	3:00	2966	Processed liquid and sludge portion completely. Only 2 to 4 " of sludge depth is left over.Users 9 members.No detail on last desludging	Y
31	Nazima- Siddarth Colony	4:30	2896	Processed liquid and sludge portion completely. Only 3" of sludge depth is left over.Users 15 .Last desludges before 1 year.	Y
32	Ahmed-Park street colony	4:00	2895	Processed liquid and sludge portion completely. Only 3" of sludge depth is left over.	Y
33	Sheikh Gulab	3:00	2840	Processed the liquid portion.0.5ft of sludge was left over.collected 70 kg og sludge	Y
34	Anil-Siddarth college	1:00	2896	the tank was last desluged before a year only 2 users.	Y
35	Kamal-MES college	1:36	2875	Last desludged 3 yrs ago.Users 3.110 kgs sludge collected	Y

36	Pablo-MES College	1:50	2832	Processed liquid and sludge portion completely. Only 2 to 4 " of sludge depth is left over	Y
37	Sheikh Muhammed- Ashhraf nagar	3:15	2866	Processed liquid and sludge portion completely. Last desludged before 3 yrs.Users 24	Y
38	Shabina- Zuari Nagar	4:00	2899	Last desludged before 7 yrs.3 users .Not plastered properly	Y
39	Fidele-MES	3:30	2900	Last desludged 2 yrs ago.Users 3.	Y
40	Ramesh- MES college	4:00	2800	Last desluged 3 yrs.Usage 4	Y
41	Sreenivash Upper orchard	4:00	3000	Users 8 members .Last desluged before 2.5 yrs	Y
42	Lalsab-MES college	2:20	2732	There was no access to the tank was desluged from a pipe .No inspection hole .	Y
43	Ram-Zuari nagar	1:10	2950	The pressure started building up after certain time and there was power cut on the particular day.	Y
44	Muzafarshah- MES college	3:20	2442	Voltage fluctuation.Last desluged - <1 yrs.Users 6 members	Y
45	krishna - Zuari nagar	2:50	2933	Last desluged 4 yrs.Users 6 .Collected 140 kgs of sludge	Y

46	Parushuram- Mother teresa colony	3:50	2900	Last desluged 6 yrs ago .Users 3 .75 kgs od sludge collected	Y
47	Yusuf-MES College	2:10	2866	Completely emptied.users 6 .No details on last desluged	Y
48	Amam- Ameer colony	3:20	2633	Last desluged befor 4 yrs.Users 8 members.85 kg of sludge collected	Y
49	Acharia- Bharath	3:30	2900	Users 8 members .Last desluged before 2.5 yrs	Y
50	Samuel-Zuari nagar	2:10	2675	Last desludged before 6 yrs.5 members usage	Y
51	Airway- Jalvayu vilas	1:24	2966	Users 5 .70 kg of sludge collected	N
52	Meghna dileep- Zuari nagar	1:00	2633	1 user .last desluged before 5 yrs	N
53	Babu-Zuari nagar	2:00	2783	2 users.the structure was damaged and there was so much sand and stones at the bottom.50 kgs of sludge was collected .	N
54	Amit factory	1:15	2735	Once tha tank was opened it was found that it was not plastered properely and the rainliquid intrusion was also evident in the tank .80 kgs of sludge was collected.	N
55	Sadanand- Surya colony	4:20	2733	Users 10.Last desluged before 1 year.No chlorination added.	N

56	John- Dabolim	1:00	2666	Completelyemptied.4users.Deslugedbefore 1 year.Thepressure was building because of thelenghty hose connection.	N
57	Naik -MES college	3:20	2732	Users 6.Last desluged before 2 yrs.110 kgs od sludge collected.	N
58	Brandon- MES	1:45	2833	Users 4.Last desluged no data. No chlorination	N
59	Swetha Naik- Sriram nagar	2:00	2900	Last desluged 4 yrs .Users 8 members .74 kgs of sludge extracted	Y
60	Suresh-MES nagar	2:35	2966	Last desluged in 2017.Users 5.Voltagefluctuation.	Y